

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Radiation Safety & Control Services, Inc. 93 Ledge Road Seabrook, NH 03874

Fulfills the requirements of

ISO/IEC 17025:2017

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 19 September 2026 Certificate Number: AC-2079

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

Radiation Safety & Control Services, Inc.

93 Ledge Road Seabrook, NH 03874

Christofer Krueger 603-474-6722

Email: crkrueger@radsafety.com Website: www.radsafety.com

CALIBRATION

ISO/IEC 17025 Accreditation Granted: 19 September 2024

Certificate Number: AC-2079 Certificate Expiry Date: 19 September 2026

Ionizing Radiation

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Ionizing Radiation Exposure Rate, Dose Rate	(100 μ to 1.6) R/hr (100 μ to 1.6) rem/hr 1 μ Sv/hr to 16 mSv/hr	6 % of reading	Comparison to Cs-137 Beam Source ANSI N323AB-2013 ANSI N322-1997
Integrated Exposure and Integrated Dose	Up to 16 R, 16 rem or 160 mSv	6 % of reading	
Ionizing Radiation Exposure Rate, Dose Rate	(1 m to 20 k) R/hr (1 m to 20 k) rem/hr (10 μ to 200) Sv/hr	2.7 % of reading	Comparison to Cs-137 Box Source ANSI N323AB-2013 ANSI N322-1997
Integrated Exposure and Integrated Dose	Up to 200 kR, 200 krem or 2 kSv	2.7 % of reading	
Neutron Ionizing Radiation Dose Rate	(6 to 120) mrem/hr	9.2 % of reading	Comparison to Plutonium- Beryllium Source, HAWK TEPC ANSI N323AB-2013, ICRP 26
Neutron Ionizing Radiation Dose Rate	(7 to 200) mrem/hr	9.4 % of reading	Comparison to Plutonium- Beryllium Source, HAWK TEPC ANSI N323AB-2013, ICRP 60
Dose Rate, Exposure Rate- Electrical Simulation	10 μR/hr to 10 R/hr	3.4 % of reading	Comparison to Ludlum Model 500 Pulsing Station

Ionizing Radiation

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Count Rate Instruments- Electrical Simulation	(1 to 9.99 x 10 ⁶) cpm	3.4 % of reading	Comparison to Ludlum Model 500 Pulsing Station
Alpha Detection	(0 to 1) Efficiency	10 % of reading	Comparison to Alpha Standard Source-(2.2 to 5.9 x 10 ⁴) dpm
Beta Detection	(0 to 1) Efficiency	10 % of reading	Comparison to Beta Standard Source-(2.8 to 4.4 x 10 ⁵) dpm
Gamma Detection	(0 to 1) Efficiency	10 % of reading	Comparison to Gamma Standard Source-(4.4 x 10 ³ to 1.7 x 10 ⁶) dpm
Radiation protection — Sealed radioactive sources — Leakage Test Alpha Sources Beta Sources	(1 x 10 ⁶ to 1) μCi	25 % of reading 44 % of reading	Comparison to Tennelec LB5100 Low Background Alpha/Beta Counting System

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.

Jason Stine, Vice President

